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PART-A
Answer all questions                                                                    

  (10 x 2 = 20)


1) Determine C such that
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,   -∞ < x < ∞ is a pdf of a random variable X.

2) If the events A and B are independent show that 
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are independent.

3) Write the MGF of a Binomial distribution with parameters n and p. Hence or otherwise find 
[image: image4.wmf](

)

.

X

E


4) If two events A and B are such that 
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, show that P(A) ≤ P(B)

5) Given the joint pdf of 
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6) Define a Markov process.

7) Define transcient state and recurrent state.

8) Suppose the customers arrive at a bank according to Poisson process with mean rate of 3 per minute. Find the probability of getting 4 customers in 2 minutes.

9) If 
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 has normal distribution N(25,4) and 
[image: image15.wmf]2

X

 has normal distribution N(30,9) and if 
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10) Define a renewal process.

PART-B
Answer any five questions





  (5 x 8 = 40)

11) Derive the MGF of normal distribution.

12) Show that F (-∞) = 0, F (∞) = 1and F(x) is right continuous.

13) Show that binomial distribution tends to Poisson distribution under some conditions to be stated.

14) Let X and Y be random variables with joint pdf f(x,y) = x+y, 0<x<1,  0<y<1, zero elsewhere. Find the correlation coefficient between X and Y

15) Let {
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} be a Markov chain with states 1,2,3 and transition probability matrix
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Find i) 
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         ii)  
[image: image24.wmf][

]

2

,

2

,

1

,

2

3

2

1

0

=

=

=

=

X

X

X

X

P




16)  Obtain the expression for 
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 in a pure birth process.

17)  State and prove Chapman-Kolmogorov equation on transition probability matrix.

18)  Let X have a pdf f(x) = 
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PART-C
Answer any two questions





(2 x 20 = 40)

19) . a) State and prove Bayes theorem.






        b) Suppose all n men at a party throw their hats in the centre of the room. 

       

             Each man then randomly selects a hat. Find the probability that none of  them will 
             get their own hat.




(10 + 10)

20) a) let {
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} be an increasing sequence of events. Show that 

          P(lim 
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) = limP(
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). Deduce the result for decreasing events.

      b) Each of four persons fires one shot at a target. let Ai , i = 1,2,3,4 denote         
     
          the event that the target is hit by person i.  If Ai are independent and 

          P(
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) = 0.4. Compute the probability that

1. All of them hit the target

2. Exactly one hit the target

3. no one hits the target 

4. atleast one hits the target.




(12 + 8)

21) . a) Derive the expression for 
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 in a Poisson process.  

       b) If 
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 have independent Poisson process with parameters 
[image: image39.wmf]1

l

 and
[image: image40.wmf]2

l

. 
           Obtain the distribution of 
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  c) Explain Yules’s process.




(10 + 5 + 5)

22). a) verify whether the following Markov chain is irreducible, aperiodic and      
      
            recurrent
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           Obtain the stationary transition probabilities.

         b) State the postulates and derive the Kolmogorov forward differential 
 
       
              equations for a birth and death process.


(10 +10)
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